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In this paper we discuss the solution of rational difference equation of the 

form 𝑧𝑛+1 =
𝑍𝑛−20

±1±𝑍𝑛−6𝑍𝑛−13𝑍𝑛−20
, 𝑛 = 0,1,… where the initial values are 

arbitrary real numbers. To confirm the obtained solutions we consider some 
numerical examples by assigning different initial values with Matlab. 
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1. Introduction

*In this paper we obtain solutions of rational
difference Eq. 1 

𝑧𝑛+1 =
𝑍𝑛−20

±1±𝑍𝑛−6𝑍𝑛−13𝑍𝑛−20
, 𝑛 = 0,1…  (1) 

where the initial values are arbitrary real numbers. 
Difference equation is a vast field which impact 

almost found in every branch of pure as well as 
applied mathematics. In this paper we study the local 
stability, global attractivity of equilibrium point of 
Eq. 1 and boundedness of solutions of the Eq. 1). 
Moreover we obtain solutions of some special cases 
of this equation. The study and solution of nonlinear 
higher order difference equation is very challenging. 
However we have still no suitable generalized 
method to deal with the global behavior of rational 
difference equations of higher order so far. 
Therefore the study of rational difference equations 
of higher order is worth for consideration. Recently 
great interest is developed in studying difference 
equation systems. The reason is that there is need of 
some techniques whose can be used in investigating 
problems in different fields. Recently a great effort 
has been made in studying the qualitative analysis of 
rational difference equations. Difference equations 
are very simple in form, but it is very difficult to 
understand thoroughly the behaviors of their 
solutions (Cinar 2004a; 2004b; 2004c). Karatas et al. 
(2006) studied the positive solutions and attractivity 
of the difference equation by considering non zero 
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real numbers initial values 𝑥𝑛+1 =
𝑥𝑛−5

±1±𝑥𝑛−2𝑥𝑛−5
, 𝑛 =

0,1…. Elsayed (2008) worked on the difference 

equation 𝑥𝑛+1 =
𝑥𝑛−5

±1±𝑥𝑛−2𝑥𝑛−5
, 𝑛 = 0,1…. He found the 

solution of this equation and obtained graphs of 
numerical examples for some values of initial 
conditions. Elsayed (2009) investigated the 
difference equation by considering real numbers 

initial values 𝑥𝑛+1 =
𝑥𝑛−5

±1±𝑥𝑛−2𝑥𝑛−5
, 𝑛 = 0,1…. He 

checked the qualitative behavior of the difference 
equation. Elsayed (2010) studied the solutions of the 
following class of difference equation 𝑥𝑛+1 =

𝑥𝑛−8

±1±𝑥𝑛−2𝑥𝑛−5𝑥𝑛−8
, 𝑛 = 0,1…. Elsayed (2011a) 

investigated the rational difference equation 𝑥𝑛+1 =
𝑥𝑛−9

±1±𝑥𝑛−4𝑥𝑛−9
, 𝑛 = 0,1…. Elsayed (2011b) investigated 

the rational difference equation 𝑥𝑛+1 =
𝑥𝑛−3

±1±𝑥𝑛−1𝑥𝑛−3
, 𝑛 = 0,1…. In Touafek and Elsayed 

(2012) got the form of solutions of the rational 

difference systems 𝑥𝑛+1 =
𝑦𝑛

𝑥𝑛−1(±1±𝑦𝑛)
, 𝑦𝑛+1 =

𝑥𝑛

𝑦𝑛−1(±1±𝑥𝑛)
. Van Khuong and Phong (2011) 

investigated the difference equation 𝑥𝑛−3 =
𝑥𝑛(1 + 𝑥𝑛−1𝑥𝑛−2), 𝑛 = 0,1, . ... Khaliq and Elsayed 
(2016) studied the solutions of some difference 

equations of the form 𝑥𝑛+1 =
𝑥𝑛−1𝑥𝑛−5

𝑥𝑛−3(±1±𝑥𝑛−1𝑥𝑛−5)
, 𝑛 =

0,1…. 
Suppose that I is some interval of real numbers 

and F a continuous function defined on Ik+1 (k+1 
copies of I), where k is some natural number. 
Throughout this thesis, we consider the following 
difference equation 

𝑧𝑛+1 = 𝑓(𝑧𝑛,𝑧𝑛−1, … , 𝑧𝑛−𝑘), 𝑛 = 0,1, . ..     (2) 

for given initial values 𝑍−𝑘 , 𝑍−(𝑘−1), … 𝑍0 ∈ 𝐼 
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Definition 1.1 (Equilibrium Point): A point 𝑧̅  ∈ 𝐼 is 
called an equilibrium point of difference Eq. 2 if 

 

𝑧̅ = 𝐹(𝑧̅, . . . , 𝑧̅)  
 

That is, 𝑧𝑛 = 𝑧̅ for 𝑛 ≥ 0 is a solution of difference 
Eq. 2. 

 

Definition 1.2 (Periodicity): A solution{𝑧𝑛}
∞

𝑛=−𝑘
of 

Eq. 2 is called periodic with period p if there exists 
an integer 𝑝 ≥ 1 is a s such that 𝑧𝑛+𝑝 = 𝑧𝑛 for all 𝑛 ≥

−𝑘 .If 𝑧𝑛+𝑝 = 𝑧𝑛 holds for smallest positive integer p

then solution {𝑧𝑛}
∞

𝑛=−𝑘
 of Eq. 2 is called periodic 

period of prime. 
 

Theorem 1.1: Consider the difference equation 
 

𝑧𝑛+1 + 𝑎𝑘𝑧𝑛 + 𝑎0𝑧𝑛−𝑘 = 0 , 𝑛 = 0,1, …  
 

where 𝑘 ∈ {1,2, … } and ai  real numbers for all i. 
Then ∑ |𝑎𝑖| < 1

𝑘
𝑖=0  is a sufficient condition for the 

asymptotic stability of Eq. 2. 

2. First equation 

In this section we give a specific form of the first 
equation in the form 

 

𝑧𝑛+1 =
𝑧𝑛−20

±1±𝑧𝑛−6𝑧𝑛−13𝑧𝑛−20
, 𝑛 = 0,1,…                    (3) 

 

with non-zero real numbers initial values. 
 

Theorem 2.1: Let {𝑧𝑛}𝑛=−20
∞ be a solution of Eq. 3. 

Then for 𝑛 = 0,1, . ..     
 

𝑍21𝑛−20 = 𝑍−20∏ [
1+3𝛼𝑧−6𝑧−13𝑧−20

1+(3𝛼+1)𝑧−6𝑧−13𝑧−20
 ]𝑛−1

𝛼=0 =

𝑤∏ [
1+3𝛼𝑔𝑝𝑤

1+(3𝛼+1)𝑔𝑝𝑤
 ]𝑛−1

𝛼=0   

𝑍21𝑛−19 = 𝑍−19∏ [
1+3𝛼𝑧−5𝑧−12𝑧−19

1+(3𝛼+1)𝑧−5𝑧−12𝑧−19
 ]𝑛−1

𝛼=0 =

𝑣∏ [
1+3𝛼𝑓𝛽𝑣

1+(3𝛼+1)𝑓𝛽𝑣
 ]𝑛−1

𝛼=0   

𝑍21𝑛−18 = 𝑍−18∏ [
1+3𝛼𝑧−4𝑧−11𝑧−18

1+(3𝛼+1)𝑧−4𝑧−11𝑧−18
 ]𝑛−1

𝛼=0 =

𝑢∏ [
1+3𝛼𝑒𝑚𝑢

1+(3𝛼+1)𝑒𝑚𝑢
 ]𝑛−1

𝛼=0   

𝑍21𝑛−17 = 𝑍−17∏ [
1+3𝛼𝑧−3𝑧−10𝑧−17

1+(3𝛼+1)𝑧−3𝑧−10𝑧−17
 ]𝑛−1

𝛼=0 =

𝑡∏ [
1+3𝛼𝑑𝑙𝑡

1+(3𝛼+1)𝑑𝑙𝑡
 ]𝑛−1

𝛼=0   

𝑍21𝑛−16 = 𝑍−16∏ [
1+3𝛼𝑧−2𝑧−9𝑧−16

1+(3𝛼+1)𝑧−2𝑧−9𝑧−16
 ]𝑛−1

𝛼=0 =

𝑠∏ [
1+3𝛼𝑐𝑘𝑠

1+(3𝛼+1)𝑐𝑘𝑠
 ]𝑛−1

𝛼=0   

𝑍21𝑛−15 = 𝑍−15∏ [
1+3𝛼𝑧−1𝑧−8𝑧−15

1+(3𝛼+1)𝑧−1𝑧−8𝑧−15
 ]𝑛−1

𝛼=0 =

𝑟∏ [
1+3𝛼𝑏𝑗𝑟

1+(3𝛼+1)𝑏𝑗𝑟
 ]𝑛−1

𝛼=0   

𝑍21𝑛−14 = 𝑍−14∏ [
1+3𝛼𝑧0𝑧−7𝑧−14

1+(3𝛼+1)𝑧0𝑧−7𝑧−14
 ]𝑛−1

𝛼=0 =

𝑞∏ [
1+3𝛼𝑎ℎ𝑞

1+(3𝛼+1)𝑎ℎ𝑞
 ]𝑛−1

𝛼=0    

𝑍21𝑛−13 = 𝑍−13∏ [
1+(3𝛼+1)𝑧−20𝑧−6𝑧−13

1+(3𝛼+2)𝑧−20𝑧−6𝑧−13
 ]𝑛−1

𝛼=0 =

𝑝∏ [
1+(3𝛼+1)𝑤𝑔𝑝

1+(3𝛼+2)𝑤𝑔𝑝
 ]𝑛−1

𝛼=0   

𝑍21𝑛−12 = 𝑍−12∏ [
1+(3𝛼+1)𝑧−19𝑧−5𝑧−12

1+(3𝛼+2)𝑧−19𝑧−5𝑧−12
 ]𝑛−1

𝛼=0 =

𝛽∏ [
1+(3𝛼+1)𝛽𝑣𝑓

1+(3𝛼+2)𝛽𝑣𝑓
 ]𝑛−1

𝛼=0   

𝑍21𝑛−11 = 𝑍−11∏ [
1+(3𝛼+1)𝑧−18𝑧−4𝑧−11

1+(3𝛼+2)𝑧−18𝑧−4𝑧−11
 ]𝑛−1

𝛼=0 =

𝑚∏ [
1+(3𝛼+1)𝑚𝑢𝑒

1+(3𝛼+2)𝑚𝑢𝑒
 ]𝑛−1

𝛼=0   

𝑍21𝑛−10 = 𝑍−10∏ [
1+(3𝛼+1)𝑧−17𝑧−3𝑧−10

1+(3𝛼+2)𝑧−17𝑧−3𝑧−10
 ]𝑛−1

𝛼=0 =

𝑙 ∏ [
1+(3𝛼+1)𝑙𝑡𝑑

1+(3𝛼+2)𝑙𝑡𝑑
 ]𝑛−1

𝛼=0   

𝑍21𝑛−9 = 𝑍−9∏ [
1+(3𝛼+1)𝑧−16𝑧−2𝑧−9

1+(3𝛼+2)𝑧−16𝑧−2𝑧−9
 ]𝑛−1

𝛼=0 =

𝑘∏ [
1+(3𝛼+1)𝑘𝑠𝑐

1+(3𝛼+2)𝑘𝑠𝑐
 ]𝑛−1

𝛼=0   

𝑍21𝑛−8 = 𝑍−8∏ [
1+(3𝛼+1)𝑧−15𝑧−1𝑧−8

1+(3𝛼+2)𝑧−15𝑧−1𝑧−8
 ]𝑛−1

𝛼=0 =

𝑗∏ [
1+(3𝛼+1)𝑏𝑗𝑟

1+(3𝛼+2)𝑏𝑗𝑟
 ]𝑛−1

𝛼=0   

𝑍21𝑛−7 = 𝑍−7∏ [
1+(3𝛼+1)𝑧−14𝑧0𝑧−7

1+(3𝛼+2)𝑧−14𝑧0𝑧−7
 ]𝑛−1

𝛼=0 =

ℎ∏ [
1+(3𝛼+1)𝑎ℎ𝑞

1+(3𝛼+2)𝑎ℎ𝑞
 ]𝑛−1

𝛼=0   

𝑍21𝑛−6 = 𝑍−6∏ [
1+(3𝛼+2)𝑧−13𝑧−20𝑧−6

1+(3𝛼+3)𝑧−13𝑧−20𝑧−6
 ]𝑛−1

𝛼=0 =

𝑔∏ [
1+(3𝛼+2)𝑔𝑝𝑤

1+(3𝛼+3)𝑔𝑝𝑤
 ]𝑛−1

𝛼=0   

𝑍21𝑛−5 = 𝑍−5∏ [
1+(3𝛼+2)𝑧−12𝑧−19𝑧−5

1+(3𝛼+3)𝑧−12𝑧−19𝑧−5
 ]𝑛−1

𝛼=0 =

𝑓∏ [
1+(3𝛼+2)𝑓𝛽𝑣

1+(3𝛼+3)𝑓𝛽𝑣
 ]𝑛−1

𝛼=0   

𝑍21𝑛−4 = 𝑍−4∏ [
1+(3𝛼+2)𝑧−11𝑧−18𝑧−4

1+(3𝛼+3)𝑧−11𝑧−18𝑧−4
 ]𝑛−1

𝛼=0 =

𝑒∏ [
1+(3𝛼+2)𝑒𝑚𝑢

1+(3𝛼+3)𝑒𝑚𝑢
 ]𝑛−1

𝛼=0   

𝑍21𝑛−3 = 𝑍−3∏ [
1+(3𝛼+2)𝑧−10𝑧−17𝑧−3

1+(3𝛼+3)𝑧−10𝑧−17𝑧−3
 ]𝑛−1

𝛼=0 =

𝑑∏ [
1+(3𝛼+2)𝑑𝑙𝑡

1+(3𝛼+3)𝑑𝑙𝑡
 ]𝑛−1

𝛼=0   

𝑍21𝑛−2 = 𝑍−2∏ [
1+(3𝛼+2)𝑧−9𝑧−16𝑧−2

1+(3𝛼+3)𝑧−9𝑧−16𝑧−2
 ]𝑛−1

𝛼=0 =

𝑐∏ [
1+(3𝛼+2)𝑐𝑘𝑠

1+(3𝛼+3)𝑐𝑘𝑠
 ]𝑛−1

𝛼=0   

𝑍21𝑛−1 = 𝑍−1∏ [
1+(3𝛼+2)𝑧−8𝑧−15𝑧−1

1+(3𝛼+3)𝑧−8𝑧−15𝑧−1
 ]𝑛−1

𝛼=0 =

𝑏∏ [
1+(3𝛼+2)𝑏𝑗𝑟

1+(3𝛼+3)𝑏𝑗𝑟
 ]𝑛−1

𝛼=0   

𝑍21𝑛 = 𝑍0∏ [
1+(3𝛼+2)𝑧−7𝑧−14𝑧0

1+(3𝛼+3)𝑧−7𝑧−14𝑧0
 ]𝑛−1

𝛼=0 =  

𝑎∏ [
1+(3𝛼+2)𝑎ℎ𝑞

1+(3𝛼+3)𝑎ℎ𝑞
 ]𝑛−1

𝛼=0   

 
where 

 
𝑧 −20= 𝑤, 𝑧−19 = 𝑣, 𝑧−18 = 𝑢, 𝑧−17 = 𝑡, 𝑧−16 = 𝑠,  
𝑧−15  = 𝑟, 𝑧−14 = 𝑞, 𝑧−13 = 𝑝, 𝑧−12 = 𝛽, 𝑧−11 = 𝑚, 𝑧−10 = 𝑙,   
𝑧−9 = 𝑘, 𝑧−8 = 𝑗, 𝑧−7 = ℎ, 𝑧−6 = 𝑔, 𝑧−5 = 𝑓, 𝑧−4 = 𝑒,    
𝑧−3 = 𝑑, 𝑧−2 = 𝑐, 𝑧−1 = 𝑏, 𝑧0 = 𝑎,  

 
Proof: For 𝑛 = 0 the result follow. Suppose that 𝑛 >
0 and that our assumption is true for 𝑛 − 1. That is 
 

𝑍21𝑛−41 = 𝑤∏ [
1+3𝛼𝑔𝑝𝑤

1+(3𝛼+1)𝑔𝑝𝑤
 ]𝑛−2

𝛼=0 , 𝑍21𝑛−40 =

𝑣∏ [
1+3𝛼𝑓𝛽𝑣

1+(3𝛼+1)𝑓𝛽𝑣
 ]𝑛−2

𝛼=0 ,   

𝑍21𝑛−39 =  𝑢∏ [
1+3𝛼𝑒𝑚𝑢

1+(3𝛼+1)𝑒𝑚𝑢
 ]𝑛−2

𝛼=0 , 𝑍21𝑛−38 =

𝑡∏ [
1+3𝛼𝑑𝑙𝑡

1+(3𝛼+1)𝑑𝑙𝑡
 ]𝑛−2

𝛼=0 ,   

𝑍21𝑛−37 = 𝑠∏ [
1+3𝛼𝑐𝑘𝑠

1+(3𝛼+1)𝑐𝑘𝑠
 ]𝑛−2

𝛼=0 , 𝑍21𝑛−36 =

 𝑟∏ [
1+3𝛼𝑏𝑗𝑟

1+(3𝛼+1)𝑏𝑗𝑟
 ]𝑛−2

𝛼=0   

 𝑍21𝑛−35 = 𝑞∏ [
1+3𝛼𝑎ℎ𝑞

1+(3𝛼+1)𝑎ℎ𝑞
 ]𝑛−2

𝛼=0  , 𝑍21𝑛−34 =

𝑝∏ [
1+(3𝛼+1)𝑤𝑔𝑝

1+(3𝛼+2)𝑤𝑔𝑝
 ]𝑛−2

𝛼=0 ,   

𝑍21𝑛−33 =  𝛽∏ [
1+(3𝛼+1)𝛽𝑣𝑓

1+(3𝛼+2)𝛽𝑣𝑓
 ]𝑛−2

𝛼=0 , 𝑍21𝑛−32 =

𝑚∏ [
1+(3𝛼+1)𝑚𝑢𝑒

1+(3𝛼+2)𝑚𝑢𝑒
 ]𝑛−2

𝛼=0 ,   

𝑍21𝑛−31 = 𝑙∏ [
1+(3𝛼+1)𝑙𝑡𝑑

1+(3𝛼+2)𝑙𝑡𝑑
 ]𝑛−2

𝛼=0 , 𝑍21𝑛−30 =

𝑘∏ [
1+(3𝛼+1)𝑘𝑠𝑐

1+(3𝛼+2)𝑘𝑠𝑐
 ]𝑛−2

𝛼=0   
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𝑍21𝑛−29 = 𝑗∏ [
1+(3𝛼+1)𝑏𝑗𝑟

1+(3𝛼+2)𝑏𝑗𝑟
 ]𝑛−2

𝛼=0  , 𝑍21𝑛−28 =

ℎ∏ [
1+(3𝛼+1)𝑎ℎ𝑞

1+(3𝛼+2)𝑎ℎ𝑞
 ]𝑛−1

𝛼=0 ,   

𝑍21𝑛−27 =  𝑔∏ [
1+(3𝛼+2)𝑔𝑝𝑤

1+(3𝛼+3)𝑔𝑝𝑤
 ]𝑛−2

𝛼=0 , 𝑍21𝑛−26 =

𝑓∏ [
1+(3𝛼+2)𝑓𝛽𝑣

1+(3𝛼+3)𝑓𝛽𝑣
 ]𝑛−2

𝛼=0 ,   

𝑍21𝑛−25 = 𝑒∏ [
1+(3𝛼+2)𝑒𝑚𝑢

1+(3𝛼+3)𝑒𝑚𝑢
 ]𝑛−2

𝛼=0 , 𝑍21𝑛−24 =

𝑑∏ [
1+(3𝛼+2)𝑑𝑙𝑡

1+(3𝛼+3)𝑑𝑙𝑡
 ]𝑛−2

𝛼=0   

𝑍21𝑛−23 = 𝑐∏ [
1+(3𝛼+2)𝑐𝑘𝑠

1+(3𝛼+3)𝑐𝑘𝑠
 ]𝑛−2

𝛼=0 , 𝑍21𝑛−22 =

𝑏∏ [
1+(3𝛼+2)𝑏𝑗𝑟

1+(3𝛼+3)𝑏𝑗𝑟
 ]𝑛−2

𝛼=0 ,   

𝑍21𝑛−21 = 𝑎∏ [
1+(3𝛼+2)𝑎ℎ𝑞

1+(3𝛼+3)𝑎ℎ𝑞
 ]𝑛−2

𝛼=0   

 
now it follows from Eq. 3 
 

𝑧21𝑛−20 =
𝑧21𝑛−41

1+𝑧21𝑛−27𝑧21𝑛−34𝑧21𝑛−41
  

= 
𝑤∏ [

1+3𝛼𝑔𝑝𝑤

1+(3𝛼+1)𝑔𝑝𝑤
 ]𝑛−2

𝛼=0

1+𝑔𝑝𝑤∏ [
1+(3𝛼+2)𝑔𝑝𝑤

1+(3𝛼+3)𝑔𝑝𝑤
 ]∏ [

1+(3𝛼+1)𝑔𝑝𝑤

1+(3𝛼+2)𝑔𝑝𝑤
 ]𝑤∏ [

1+3𝛼𝑔𝑝𝑤

1+(3𝛼+1)𝑔𝑝𝑤
 ]𝑛−2

𝛼=0
𝑛−2
𝛼=0

𝑛−2
𝛼=0

  

= 
𝑤∏ [

1+3𝛼𝑔𝑝𝑤

1+(3𝛼+1)𝑔𝑝𝑤
 ]𝑛−2

𝛼=0

1+𝑔𝑝𝑤∏ [
1+3𝛼𝑔𝑝𝑤

1+(3𝛼+3)𝑔𝑝𝑤
 ]𝑛−2

𝛼=0

  

= 
𝑤∏ [

1+3𝛼𝑔𝑝𝑤

1+(3𝛼+1)𝑔𝑝𝑤
 ]𝑛−2

𝛼=0

1+(3𝛼−2)𝑔𝑝𝑤

1+(3𝛼−3)𝑔𝑝𝑤

  

𝑍21𝑛−20 = 𝑤∏ [
1+3𝛼𝑔𝑝𝑤

1+(3𝛼+1)𝑔𝑝𝑤
 ]𝑛−1

𝛼=0   

 

Similarly, other relations can be proved in same 
manner. 

 
Theorem 2.2: Eq. 3 has zero as equilibrium point. 

 
Proof: To find the equilibrium points of Eq. 3 
 

𝑧 =
𝑧

1 + 𝑧
3  

𝑧
4
 = 0   

 

thus 𝑧 = 0 is the equilibrium point of Eq. 3. 
Theorem 2.3: For Eq. 3, every positive solution is 
bounded. 
 
Proof: Let {𝑧𝑛}𝑛=−20

∞  be a solution of Eq. 3. Then from 
Eq. 3 
 
𝑧𝑛+1 =

𝑧𝑛−20

1+𝑧𝑛−6𝑧𝑛−13𝑧𝑛−20
 ≤ 𝑧𝑛−20  

 
then 𝑧𝑛+1  ≤ 𝑧𝑛−20 for all 𝑛 ≥  0. Then the sequence 
{𝑧𝑛}𝑛=−20

∞  is decreasing and are bounded from above 
by 
 
𝑀 = 𝑚𝑎𝑥  

{
𝑧−20  𝑧−19, 𝑧−18, 𝑧−17, 𝑧−16, 𝑧−15, 𝑧−14, 𝑧−13, 𝑧−12, 𝑧−11, 𝑧−10,

𝑧−9, 𝑧−8, 𝑧−7, 𝑧−6, 𝑧−5, 𝑧−4, 𝑧−3, 𝑧−2, 𝑧−1, 𝑧−0,
}   

2.1. Numerical examples 

For confirming the results, suppose some 
numerical examples which show different types of 
solutions of Eq. 3. 

 

Example 2.1: Assume that (Fig. 1) 
 

𝑧−20 = 15, 𝑧−19 = −2.5, 𝑧−18 = −3, 𝑧−17 = 2, 𝑧−16 =
−6, 𝑧−15 = 3, 𝑧−14 = −7,  
𝑧−13 = 8, 𝑧−12 = 0, 𝑧−11 = −10, 𝑧−10 = 9, 𝑧−9 =
−3.5, 𝑧−8 = 9, 𝑧−7 = 15,  
𝑧−6 = 5.5, 𝑧−5 = 2, 𝑧−4 = 0, 𝑧−3 = 13, 𝑧−2 = 11, 𝑧−1 =
8.5, 𝑧0 = 1  

 

Example 2.2: Assume that (Fig. 2) 
 

𝑧−20 = 10, 𝑧−19 = 3, 𝑧−18 = 10, 𝑧−17 = −5, 𝑧−16 =
−6, 𝑧−15 = 9, 𝑧−14 = −7.5,  
𝑧−13 = 10, 𝑧−12 = 0, 𝑧−11 = −15, 𝑧−10 = 9, 𝑧−9 =
−3.5, 𝑧−8 = 3.5, 𝑧−7 = 15, 𝑧−6 = 10.5,  
𝑧−5 = 7, 𝑧−4 = 0, 𝑧−3 = 18, 𝑧−2 = 11, 𝑧−1 = 9.5, 𝑧0 = 6  

 

 
Fig. 1: 𝑧(𝑛 + 1) = 𝑧(𝑛 − 20)/ (−1 + 𝑧(𝑛 − 6)𝑧(𝑛 −

13)𝑧(𝑛 − 20)) 

 

 
Fig. 2: 𝑧(𝑛 + 1) = 𝑧(𝑛 − 20)/ (−1 + 𝑧(𝑛 − 6)𝑧(𝑛 −

13)𝑧(𝑛 − 20)) 

3. Second equation 

In this portion we give a specific form of the 
equation in the form  
 

𝑧𝑛+1 =
𝑧𝑛−20

−1+𝑧𝑛−6𝑧𝑛−13𝑧𝑛−20
, 𝑛 ∈ 𝑁, 𝑛 = 0,1,… ,                         (4) 

 
with non-zero real numbers initial values and  
 
𝑧𝛼−6𝑧𝛼−13𝑧𝛼−20 ≠ 1  
 

for 
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(𝛼 = 0,1,2,3,4,5,6)  

 
Theorem 3.1: Every solution {𝑧𝑛}𝑛=−20

∞  of Eq. 4 is 
periodic with period 42 and is of the form   
 

{
 
 
 

 
 
 
𝑤, 𝑣, 𝑢, 𝑡, 𝑠, 𝑟, 𝑞, 𝑝, 𝛽,𝑚, 𝑙, 𝑘, 𝑗, ℎ, 𝑔, 𝑓, 𝑒, 𝑑, 𝑐, 𝑏, 𝑎,

𝑤

−1+𝑔𝑝𝑤
,

𝑣

−1+𝑓𝛽𝑣
,

𝑢

−1+𝑒𝑚𝑢
,

𝑡

−1+𝑑𝑙𝑡 
,

𝑠

−1+𝑐𝑘𝑠
,

𝑟

−1+𝑏𝑗𝑟
,

𝑞

−1+𝑎ℎ𝑞

𝑝(−1 + 𝑤𝑔𝑝), 𝛽(−1 + 𝑣𝑓𝛽),𝑚(−1 + 𝑒𝑚𝑢), 𝑙(−1 + 𝑑𝑙𝑡),

𝑘(−1 + 𝑐𝑘𝑠), 𝑗(−1 + 𝑏𝑗𝑟), ℎ(−1 + 𝑎ℎ𝑞),
𝑔

−1+𝑔𝑝𝑤
,

𝑓

−1+𝑣𝑓𝛽

𝑒

−1+𝑒𝑚𝑢
,

𝑑

1−+𝑑𝑙𝑡
,

𝑐

−1+𝑐𝑘𝑠
,

𝑏

−1+𝑏𝑗𝑟
,

𝑎

−1+𝑎ℎ𝑞
, 𝑤, 𝑣, 𝑢 }

 
 
 

 
 
 

  

 
Proof: From Eq. 4 it is clear that  
 

𝑧1 =
𝑤

−1+𝑔𝑝𝑤
, 𝑧2 =

𝑣

−1+𝑓𝛽𝑣 
, 𝑧3 =

𝑢

−1+𝑒𝑚𝑢
, 𝑧4 =

𝑡

−1+𝑑𝑙𝑡
,   

𝑧5 =
𝑠

−1+𝑐𝑘𝑠
, 𝑧6 =

𝑟

−1+𝑏𝑗𝑟 
, 𝑧7 =

𝑞

−1+𝑎ℎ𝑞
, 𝑧8 = 𝑝(−1 + 𝑤𝑔𝑝),  

𝑧9 =  𝛽(−1 + 𝑣𝑓𝛽), 𝑧10 = 𝑚(−1 + 𝑒𝑚𝑢), 𝑧11 =
𝑙(−1 + 𝑑𝑙𝑡), 𝑧12 = 𝑘(−1 + 𝑐𝑘𝑠),   

𝑧13 = 𝑗(−1 + 𝑏𝑗𝑟), 𝑧14 = ℎ(−1 + 𝑎ℎ𝑞), 𝑧15 =
𝑔

−1+𝑔𝑝𝑤
, 𝑧16 =

𝑓

−1+𝑣𝑓𝛽
,   

𝑧17 =
𝑒

−1+𝑒𝑚𝑢
, 𝑧18 =

𝑑

−1+𝑑𝑙𝑡 
, 𝑧19 =

𝑐

−1+𝑐𝑘𝑠
, 𝑧20 =

𝑏

−1+𝑏𝑗𝑟
, 𝑍21 =

𝑎

−1+𝑎ℎ𝑞
.   

 
Theorem 3.2: Eq. 4 has two equilibrium points 0 

and√2
3
  which are not locally asymptotically stable. 

 
Proof: To find equilibrium point from Eq. 4 
 

𝑧 =
𝑧

−1+𝑧
3       

𝑧 = 0, 𝑧 =  √2
3

  
  

Let 𝑓: (0,∞)3  → (0,∞) be a function defined by 
 

𝑓(𝑤, 𝑥, 𝑦) =
𝑦

−1+𝑤𝑥𝑦
  

𝑓𝑤 (𝑤, 𝑥, 𝑦) =
−𝑥𝑦2

(−1+𝑤𝑥𝑦)2
  

𝑓𝑥  (𝑤, 𝑥, 𝑦) =
−𝑤𝑦2

(−1+𝑤𝑥𝑦)2
  

𝑓𝑦 (𝑤, 𝑥, 𝑦) =
−1

(−1+𝑤𝑥𝑦)2
  

 
At 𝑧 = 0  

 
𝑓𝑤(𝑧̅, 𝑧̅, 𝑧̅) = 0, 𝑓𝑥(𝑧̅, 𝑧̅, 𝑧̅) = 0, 𝑓𝑦 (𝑧̅, 𝑧̅, 𝑧̅) =  −1.  

 
So linearized equation of Eq. 4 about 𝑧̅ = 0 is 𝑦𝑛+1 +
𝑦𝑛−2 = 0 

at 𝑧 =  √2
3

    
 

𝑓𝑤(𝑧̅, 𝑧̅, 𝑧̅) = −2, 𝑓𝑥(𝑧̅, 𝑧̅, 𝑧̅) = −2, 𝑓𝑦 (𝑧̅, 𝑧̅, 𝑧̅) =  −1.  

 

So linearized equation of Eq. 4 about 𝑧 =  √2
3

 is 
 
 𝑦𝑛+1 + 2𝑦𝑛 + 2𝑦𝑛 + 𝑦𝑛−2 = 0.           

 
By the generalization of theorem [A] we find that 

𝑧 = 0, 𝑧 =  √2
3

  are unstable.  
 

Theorem 3.3: Eq. 4 has a periodic solution of period 
21 if 𝑎ℎ𝑞 = 𝑏𝑗𝑟 = 𝑐𝑘𝑠 = 𝑑𝑙𝑡 = 𝑒𝑚𝑢 = 𝑣𝑓𝛽 = 𝑔𝑝𝑤 =
2,  and then takes the form 
 
{𝑤, 𝑣, 𝑢, 𝑡, 𝑠, 𝑟, 𝑞, 𝑝, 𝛽,𝑚, 𝑙, 𝑘, 𝑗, ℎ, 𝑔, 𝑓, 𝑒, 𝑑, 𝑐, 𝑏, 𝑎, 𝑤, 𝑣, 𝑢, … } 

 
Proof: First assume that there is a prime period 21 
solution from conditions of above theorem 

{
 
 
 
 

 
 
 
 𝑤 =

𝑤

−1 + 𝑔𝑝𝑤
, 𝑣 =  

𝑣

−1 + 𝑓𝛽𝑣
, 𝑢 =  

𝑢

−1 + 𝑒𝑚𝑢
, 𝑡 =  

𝑡

−1 + 𝑑𝑙𝑡 
,

𝑠 =
𝑠

−1 + 𝑐𝑘𝑠
, 𝑟 =  

𝑟

−1 + 𝑏𝑗𝑟
, 𝑞 =  

𝑞

−1 + 𝑎ℎ𝑞
, 𝑝 = 𝑝(−1 + 𝑤𝑔𝑝),

𝛽 =  𝛽(−1 + 𝑣𝑓𝛽),𝑚 = 𝑚(−1 + 𝑒𝑚𝑢), 𝑙 = 𝑙(−1 + 𝑑𝑙𝑡), 𝑘 = 𝑘(−1 + 𝑐𝑘𝑠)

𝑗 = 𝑗(−1 + 𝑏𝑗𝑟), ℎ = ℎ(−1 + 𝑎ℎ𝑞), 𝑔 =
𝑔

−1 + 𝑔𝑝𝑤
, 𝑓 =  

𝑓

−1 + 𝑣𝑓𝛽

𝑒 =  
𝑒

−1 + 𝑒𝑚𝑢
, 𝑑 =

𝑑

1 − +𝑑𝑙𝑡
, 𝑐 =

𝑐

−1 + 𝑐𝑘𝑠
, 𝑏 =

𝑏

−1 + 𝑏𝑗𝑟
, 𝑎

𝑎

−1 + 𝑎ℎ𝑞
.
}
 
 
 
 

 
 
 
 

 

 
assume that 𝑎ℎ𝑞 = 𝑏𝑗𝑟 = 𝑐𝑘𝑠 = 𝑑𝑙𝑡 = 𝑒𝑚𝑢 = 𝑣𝑓𝛽 =
𝑔𝑝𝑤 = 2, then we see from conditions of above 
theorem 
 
𝑧42𝑛−20 = 𝑤, 𝑧42𝑛−19 = 𝑣, 𝑧42𝑛−18 = 𝑢, 𝑧42𝑛−17 =
𝑡, 𝑧42𝑛−16 = 𝑠, 𝑧42𝑛−15 = 𝑟,   
𝑧42𝑛−14 = 𝑞, 𝑧42𝑛−13 = 𝑝, 𝑧42𝑛−12 = 𝛽, 𝑧42𝑛−11 =
𝑚, 𝑧42𝑛−10 = 𝑙, 𝑧42𝑛−9 = 𝑘,   
𝑧42𝑛−8 = 𝑗, 𝑧42𝑛−7 = ℎ, 𝑧42𝑛−6 = 𝑔, 𝑧42𝑛−5 = 𝑓, 𝑧42𝑛−4 =
𝑒, 𝑧42𝑛−3 = 𝑑,   
𝑧42𝑛−2 = 𝑐, 𝑧42𝑛−1 = 𝑏, 𝑧42𝑛 = 𝑎. 

 
Thus solution is of period 21. 

3.1. Numerical examples 

For confirming the results, suppose some 
numerical examples which shows different types of 
solutions of Eq. 4. 

Example 3.1: Assume that (Fig. 3) 
𝑧−10 = 10, 𝑧−19 = −18.5, 𝑧−18 = −5, 𝑧−17 = 10, 𝑧−16 =
13.5, 𝑧−15 = −8.5, 𝑧−14 = 1.5,  
𝑧−13 = 1.2, 𝑧−12 = −9, 𝑧−11 = 15, 𝑧−10 = −7, 𝑧−9 =
6, 𝑧−8 = 17, 𝑧−7 = 19.5, 𝑧−6 = 2,  
𝑧−5 = 9.5, 𝑧−4 = 16.5, 𝑧−3 = 11.5, 𝑧−2 = 14, 𝑧−1 =
10.5, 𝑧0 = −5.5  

 

Example 3.2: Assume that (Fig. 4) 
 
𝑧−20 = 15, 𝑧−19 = −2.5, 𝑧−18 = −3, 𝑧−17 = 2, 𝑧−16 =
−6, 𝑧−15 = 3, 𝑧−14 = −7,  
𝑧−13 = 8, 𝑧−12 = 0, 𝑧−11 = −10, 𝑧−10 = 9, 𝑧−9 =
−3.5, 𝑧−8 = 9, 𝑧−7 = 15, 𝑧−6 = 5.5,  
𝑧−5 = 2, 𝑧−4 = 0, 𝑧−3 = 13, 𝑧−2 = 114, 𝑧−1 = 8.5, 𝑧0 = 1  

 



Stephen Sadiq, Muhammad Kalim/International Journal of Advanced and Applied Sciences, 5(7) 2018, Pages: 64-70 

68 
 

 
Fig. 3: 𝑧(𝑛 + 1) = 𝑧(𝑛 − 20)/ (−1 + 𝑧(𝑛 − 6)𝑧(𝑛 −

13)𝑧(𝑛 − 20)) 
 

 
Fig. 4: 𝑧(𝑛 + 1) = 𝑧(𝑛 − 20)/ (−1 + 𝑧(𝑛 − 6)𝑧(𝑛 −

13)𝑧(𝑛 − 20)) 

4. Third equation 

In this part we give a specific form of equation in 
the form  
𝑧𝑛+1 =

𝑧𝑛−20

1−𝑧𝑛−6𝑧𝑛−13𝑧𝑛−20
 , 𝑛 = 0,1,.  .  .                                       (5) 

 

with non-zero real numbers initial values and 
 
𝑧𝛼−6𝑧𝛼−13 𝑧𝛼−20 ≠ 1  
 

for  
 
(𝛼 = 0,1,2,3,4,5,6)  

 

Theorem 4.1: Let {𝑧𝑛}𝑛=−20 
∞  be a solution of Eq. 5. 

Then for𝑛 = 0,1, . ..  
 

𝑍21𝑛−20 = 𝑍−20  ∏ [
1−3𝛼𝑧−6 𝑧−13 𝑧−20

1−(3𝛼+1)𝑧−6𝑧−13𝑧−20
]𝑛−1

𝛼=0 =

𝑤 ∏ [
1−3𝛼 𝑔𝑝𝑤

1−(3𝛼+1)𝑔𝑝𝑤
]𝑛−1

𝛼=0   

𝑍21𝑛−19 = 𝑍−19  ∏ [
1−3𝛼𝑧−5 𝑧−12 𝑧−19

1−(3𝛼+1)𝑧−5𝑧−12𝑧−19
]𝑛−1

𝛼=0 =

𝑣 ∏ [
1−3𝛼 𝑓 𝛽𝑣

1−(3𝛼+1)𝑓 𝛽𝑣
]𝑛−1

𝛼=0   

𝑍21𝑛−18 = 𝑍−18  ∏ [
1−3𝛼𝑧−4 𝑧−11 𝑧−18

1−(3𝛼+1)𝑧−4𝑧−11𝑧−18
]𝑛−1

𝛼=0 =

𝑢 ∏ [
1−3𝛼 𝑒𝑚𝑢

1−(3𝛼+1)𝑒𝑚𝑢
]𝑛−1

𝛼=0   

𝑍21𝑛−17 = 𝑍−17  ∏ [
1−3𝛼𝑧−3 𝑧−10 𝑧−17

1−(3𝛼+1)𝑧−3𝑧−10𝑧−17
]𝑛−1

𝛼=0 =

𝑡 ∏ [
1−3𝛼𝑑𝑙𝑡

1−(3𝛼+1)𝑑𝑙𝑡
]𝑛−1

𝛼=0   

𝑍21𝑛−16 = 𝑍−16  ∏ [
1−3𝛼𝑧−2 𝑧−9 𝑧−16

1−(3𝛼+1)𝑧−2 𝑧−9 𝑧−16
]𝑛−1

𝛼=0 =

𝑠 ∏ [
1−3𝛼𝑐𝑘𝑠

1−(3𝛼+1)𝑐𝑘𝑠
]𝑛−1

𝛼=0   

𝑍21𝑛−15 = 𝑍−15  ∏ [
1−3𝛼𝑧−1 𝑧−8 𝑧−15

1−(3𝛼+1)𝑧−1 𝑧−8 𝑧−15
]𝑛−1

𝛼=0 =

𝑟 ∏ [
1−3𝛼𝑏𝑗𝑟

1−(3𝛼+1)𝑏𝑗𝑟
]𝑛−1

𝛼=0   

𝑍21𝑛−14 = 𝑍−14  ∏ [
1−3𝛼𝑧0 𝑧−7 𝑧−14

1−(3𝛼+1)𝑧0 𝑧−7 𝑧−14
]𝑛−1

𝛼=0 =

𝑞 ∏ [
1−3𝛼𝑎ℎ𝑞

1−(3𝛼+1)𝑎ℎ𝑞
]𝑛−1

𝛼=0   

𝑍21𝑛−13 = 𝑍−13  ∏ [
1−(3𝛼+1)𝑧−20 𝑧−6 𝑧−13

1−(3𝛼+2)𝑧−20 𝑧−6 𝑧−13
]𝑛−1

𝛼=0 =

𝑝 ∏ [
1−(3𝛼+1)𝑤𝑔𝑝

1−(3𝛼+2)𝑤𝑔𝑝
]𝑛−1

𝛼=0   

𝑍21𝑛−12 = 𝑍−12  ∏ [
1−(3𝛼+1)𝑧−19 𝑧−5 𝑧−12

1−(3𝛼+2)𝑧−19 𝑧−5 𝑧−12
]𝑛−1

𝛼=0 =

𝛽 ∏ [
1−(3𝛼+1)𝛽𝑣𝑓

1−(3𝛼+2)𝛽𝑣𝑓
]𝑛−1

𝛼=0   

𝑍21𝑛−11 = 𝑍−11 ∏ [
1−(3𝛼+1) 𝑧−18 𝑧−4 𝑧−11

1−(3𝛼+2)𝑧−18 𝑧−4 𝑧−11
]𝑛−1

𝛼=0 =

𝑚 ∏ [
1−(3𝛼+1)𝑚𝑢𝑒

1−(3𝛼+2)𝑚𝑢𝑒
]𝑛−1

𝛼=0   

𝑍21𝑛−10 = 𝑍−10 ∏ [
1−(3𝛼+1) 𝑧−17 𝑧−3 𝑧−10

1−(3𝛼+2)𝑧−17 𝑧−3 𝑧−10
]𝑛−1

𝛼=0 =

𝑙 ∏ [
1−(3𝛼+1)𝑙𝑡𝑑

1−(3𝛼+2)𝑙𝑡𝑑
]𝑛−1

𝛼=0   

𝑍21𝑛−9 = 𝑍−9 ∏ [
1−(3𝛼+1) 𝑧−16 𝑧−2 𝑧−9

1−(3𝛼+2) 𝑧−16 𝑧−2 𝑧−9
]𝑛−1

𝛼=0 =

𝑘∏ [
1−(3𝛼+1)𝑘𝑠𝑐

1−(3𝛼+2)𝑘𝑠𝑐
]𝑛−1

𝛼=0   

𝑍21𝑛−8 = 𝑍−8 ∏ [
1−(3𝛼+1) 𝑧−15 𝑧−1 𝑧−8

1−(3𝛼+2) 𝑧−15 𝑧−1 𝑧−8
]𝑛−1

𝛼=0 =

𝑗∏ [
1−(3𝛼+1)𝑏𝑗𝑟

1−(3𝛼+2)𝑏𝑗𝑟
]𝑛−1

𝛼=0   

𝑍21𝑛−7 = 𝑍−7 ∏ [
1−(3𝛼+1) 𝑧−14 𝑧0 𝑧−7

1−(3𝛼+2) 𝑧−14 𝑧0 𝑧−7
]𝑛−1

𝛼=0 =

ℎ∏ [
1−(3𝛼+1)𝑎ℎ𝑞

1−(3𝛼+2)𝑎ℎ𝑞
]𝑛−1

𝛼=0   

𝑍21𝑛−6 = 𝑍−6 ∏ [
1−(3𝛼+2) 𝑧−13 𝑧−20 𝑧−6

1−(3𝛼+3) 𝑧−13 𝑧−20 𝑧−6
]𝑛−1

𝛼=0 =

𝑔∏ [
1−(3𝛼+2)𝑔𝑝𝑤

1−(3𝛼+3)𝑔𝑝𝑤
]𝑛−1

𝛼=0   

𝑧21𝑛−5 = 𝑧−5 ∏ [
1−(3𝛼+2) 𝑧−12 𝑧−19 𝑧−5

1−(3𝛼+3) 𝑧−12 𝑧−19 𝑧−5
]𝑛−1

𝛼=0 =

𝑓∏ [
1−(3𝛼+2)𝑓 𝛽𝑣 

1−(3𝛼+3)𝑓 𝛽𝑣
]𝑛−1

𝛼=0   

𝑧21𝑛−4 = 𝑧−4 ∏ [
1−(3𝛼+2) 𝑧−11 𝑧−18 𝑧−4

1−(3𝛼+3) 𝑧−11 𝑧−18 𝑧−4
]𝑛−1

𝛼=0 =

𝑒∏ [
1−(3𝛼+2)𝑒𝑚𝑢 

1−(3𝛼+3)𝑒𝑚𝑢
]𝑛−1

𝛼=0   

𝑧21𝑛−3 = 𝑧−3 ∏ [
1−(3𝛼+2) 𝑧−10 𝑧−17 𝑧−3

1−(3𝛼+3) 𝑧−10 𝑧−17 𝑧−3
]𝑛−1

𝛼=0 =

𝑑∏ [
1−(3𝛼+2)𝑑𝑙𝑡 

1−(3𝛼+3)𝑑𝑙𝑡
]𝑛−1

𝛼=0   

𝑧21𝑛−2 = 𝑧−2 ∏ [
1−(3𝛼+2) 𝑧−9 𝑧−16 𝑧−2

1−(3𝛼+3) 𝑧−9 𝑧−16 𝑧−2
]𝑛−1

𝛼=0 =

𝑐∏ [
1−(3𝛼+2)𝑐𝑘𝑠 

1−(3𝛼+3)𝑐𝑘𝑠
]𝑛−1

𝛼=0   

𝑧21𝑛−1 = 𝑧−1 ∏ [
1−(3𝛼+2) 𝑧−8 𝑧−15 𝑧−1

1−(3𝛼+3) 𝑧−8 𝑧−15 𝑧−1
]𝑛−1

𝛼=0 =

𝑏∏ [
1−(3𝛼+2)𝑏𝑗𝑟 

1−(3𝛼+3)𝑏𝑗𝑟
]𝑛−1

𝛼=0   

𝑧21𝑛 = 𝑧0 ∏ [
1−(3𝛼+2) 𝑧−7 𝑧−14 𝑧0

1−(3𝛼+3) 𝑧−7 𝑧−14 𝑧0
]𝑛−1

𝛼=0 = 𝑎∏ [
1−(3𝛼+2)𝑎ℎ𝑞 

1−(3𝛼+3)𝑎ℎ𝑞
]𝑛−1

𝛼=0   

 

where 
 
𝑧−20 = 𝑤, 𝑧−19 = 𝑣, 𝑧−18 = 𝑢, 𝑧−17 = 𝑡, 𝑧−16𝑠, 𝑧−15 =
𝑟, 𝑧−14 = 𝑞, 𝑧−13 = 𝑝, 𝑧−12 =  𝛽,   
𝑧−11 = 𝑚, 𝑧−10 = 𝑙, 𝑧−9 = 𝑘, 𝑧−8 = 𝑗, 𝑧−7 ℎ, 𝑧−6 = 𝑔, 𝑧−5 =
𝑓, 𝑧−4 = 𝑒, 𝑧−3 = 𝑑, 𝑧−2 = 𝑐,  
𝑧−1 = 𝑏, 𝑧0 = 𝑎  
 

and 
 
𝑧𝛼−6𝑧𝛼−13 𝑧𝛼−20 ≠ 1  
 

for 
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(𝛼 = 0,1,2,3,4,5,6)  
 

Proof: The proof is similar to the proof of theorem 
2.1. 
 

Remark 4.1: The equilibrium point of Eq. 5 is zero 
which is not asymptotically stable. 

4.1. Numerical examples 

For confirming the results, take numerical 
examples which show different types of solutions of 
Eq. 5. 

 
Example 4.1: Assume that (Fig. 5) 
 
𝑧−20 = 18, 𝑧−19 = 10, 𝑧−18 = −5, 𝑧−17 = 0, 𝑧−16 =
11, 𝑧−15 = 2.5,   
𝑧−14 = −1.5, 𝑧−13 = 7.7, 𝑧−12 = 9, 𝑧−11 = −15, 𝑧−10 =
−3, 𝑧−9 = 7,   
𝑧−8 = 10, 𝑧−7 = 17.5, 𝑧−6 = 2, 𝑧−5 = 15.5, 𝑧−4 =
16.5, 𝑧−3 = 3.5,   
𝑧−2 = 17, 𝑧−1 = 11.5, 𝑧0 =  −10  

 
Example 4.2: Assume that (Fig. 6) 

 
𝑧−20 = 10, 𝑧−19 = −18.5, 𝑧−18 = −5, 𝑧−17 = 10, 𝑧−16 =
13.5, 𝑧−15 = 8.5,   
𝑧−14 = 1.5, 𝑧−13 = 1.2, 𝑧−12 = −9, 𝑧−11 = 15, 𝑧−10 =
−7, 𝑧−9 = 6,   
𝑧−8 = 17, 𝑧−7 = 19.5, 𝑧−6 = 2, 𝑧−5 = 9.5, 𝑧−4 = 16.5, 𝑧−3 =
11.5,   
𝑧−2 = 14, 𝑧−1 = 10.5, 𝑧0 =  −5.5  

 

 
Fig. 5: 𝑧(𝑛 + 1) = 𝑧(𝑛 − 20)/ (1 − 𝑧(𝑛 − 6)𝑧(𝑛 −

13)𝑧(𝑛 − 20)) 

5. Fourth equation 

In this part we give solution of the equation in the 
form 

 
 𝑧𝑛+1 =

𝑧𝑛−20

−1−𝑧𝑛−6𝑧𝑛−13𝑧𝑛−20
, 𝑛 = 0,1,…,                               (6) 

 
with non-zero real numbers initial values and 
 
𝑧𝛼−6𝑧𝛼−13𝑧𝛼−20 ≠ 1  

 
for 
 
(𝛼 = 0,1,2,3,4,5,6)  

 
Fig. 6: 𝑧(𝑛 + 1) = 𝑧(𝑛 − 20)/ (1 − 𝑧(𝑛 − 6)𝑧(𝑛 −

13)𝑧(𝑛 − 20)) 

 
Theorem 5.1: Every solution {𝑧𝑛}𝑛=−20

∞   of Eq. 6 is 
periodic with period 42 and is of the form 
 

{
 
 
 

 
 
 
𝑤, 𝑣, 𝑢, 𝑡, 𝑠, 𝑟, 𝑞, 𝑝, 𝛽,𝑚, 𝑙, 𝑘, 𝑗, ℎ, 𝑔, 𝑓, 𝑒, 𝑑, 𝑐, 𝑏, 𝑎,

−𝑤

1+𝑔𝑝𝑤
,

−𝑣

1+𝑓𝛽𝑣
,

−𝑢

1+𝑒𝑚𝑢

−𝑡

1+𝑑𝑙𝑡 

−𝑠

1+𝑐𝑘𝑠

−𝑟

1+𝑏𝑗𝑟

−𝑞

1+𝑎ℎ𝑞

−𝑝(1 + 𝑤𝑔𝑝), −𝛽(1 + 𝑣𝑓𝛽), −(1 + 𝑒𝑚𝑢), −𝑙(1 + 𝑑𝑙𝑡)

−𝑘(1 + 𝑐𝑘𝑠),−𝑗(1 + 𝑏𝑗𝑟), −ℎ(1 + 𝑎ℎ𝑞),
−𝑔

1+𝑔𝑝𝑤
,

−𝑓

1+𝑣𝑓𝛽

−𝑒

1+𝑒𝑚𝑢
,
−𝑑

1+𝑑𝑙𝑡
,
−𝑐

1+𝑐𝑘𝑠
,
−𝑏

1+𝑏𝑗𝑟
,

−𝑎

1+𝑎ℎ𝑞
, 𝑤, 𝑣, 𝑢 }

 
 
 

 
 
 

  

 

Proof: The proof is similar to the proof of the 
theorem 3.1 

 

Remark 5.1: Eq. 6 has two equilibrium points 
0which is not locally asymptotically stable. 

 

Remark 5.2: Eq. 6 has a periodic solution of period 
21 if 
 
𝑎ℎ𝑞 = 𝑏𝑗𝑟 = 𝑐𝑘𝑠 = 𝑑𝑙𝑡 = 𝑒𝑚𝑢 = 𝑣𝑓 𝛽 = 𝑔𝑝𝑤 = −2 

 
and then takes the form 
 
𝑤, 𝑣, 𝑢, 𝑡, 𝑠, 𝑟, 𝑞, 𝑝, 𝛽,𝑚, 𝑙, 𝑘, 𝑗, ℎ, 𝑔, 𝑓, 𝑒, 𝑑, 𝑐, 𝑏, 𝑎, 𝑤, 𝑣, 𝑢, …  

5.1. Numerical examples 

For confirming the results, consider numerical 
examples which represent different kinds of 
solutions of Eq. 6. 

 

Example 5.1: Assume that (Fig. 7) 
𝑧−20 = 10, 𝑧−19 = −8.5, 𝑧−18 = −6, 𝑧−17 = 9, 𝑧−16 =
−12, 𝑧−15 = 0, 𝑧−14 = −9.5,  
𝑧−13 = 9.5, 𝑧−12 = 3.5, 𝑧−11 = −10, 𝑧−10 = 16.5, 𝑧−9 =
3.5, 𝑧−8 = −5, 𝑧−7 = 18, 𝑧−6 = −5.5,  
𝑧−5 = 2, 𝑧−4 = 0.5, 𝑧−3 = −15, 𝑧−2 = 12.5, 𝑧−1 = 8.5, 𝑧0 =
−1  

 
Example 5.2: Assume that (Fig. 8) 
 
𝑧−20 = 15, 𝑧−19 = −2.5, 𝑧−18 = −3, 𝑧−17 = 2, 𝑧−16 =
−9, 𝑧−15 = 3, 𝑧−14 = −7,  
𝑧−13 = 0.8, 𝑧−12 = 0, 𝑧−11 = −18, 𝑧−10 = 9, 𝑧−9 =
−3.5, 𝑧−8 = 9, 𝑧−7 = 15,  
𝑧−6 = 5.5, 𝑧−5 = 2, 𝑧−4 = 0, 𝑧−3 = 13, 𝑧−2 = 1.1, 𝑧−1 =
8.5, 𝑧0 = 11  
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Fig. 7: 𝑧(𝑛 + 1) = 𝑧(𝑛 − 20)/ (1 − 𝑧(𝑛 − 6)𝑧(𝑛 −

13)𝑧(𝑛 − 20)) 
 

 
Fig. 8: 𝑧(𝑛 + 1) = 𝑧(𝑛 − 20)/(−1 − 𝑧(𝑛 − 6)𝑧(𝑛 −

13)𝑧(𝑛 − 20))  

6. Conclusion 

In this paper we studied solutions, equilibrium 
points and periodicity of four types of difference 
equations of Eq. 1. Eq. 3 has zero as equilibrium 
point and every positive solution is bounded. Eq. 4 

has two equilibrium points 0 and √2
3
 which are not 

locally asymptotically stable and has a periodic 
solution of period 42. The equilibrium point of Eq. 5 
is zero which is not asymptotically stable .Every 
solution of Eq. 6 is periodic with period 21 and has 
two equilibrium points 0 which is not locally 

asymptotically stable. To confirm the obtained 
result, we gave numerical examples of each case by 
using Matlab. 
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